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The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the
occurrence of spindle waves. In order to describe the dynamic mechanisms which control the sensory transfer
of information, it is necessary to have a qualitative model for the response properties of thalamic neurons. As
the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for
a recent experiment by Le Masson et al. �Nature �London� 417, 854 �2002�� on the thalamocortical loop. We
use a conductance based model in order to motivate an extension of the Hindmarsh-Rose model, which mimics
experimental observations of Le Masson et al. Typically, thalamic neurons posses two different firing modes,
depending on their membrane potential. At depolarized potentials, the cells fire in a single spike mode and
relay synaptic inputs in a one-to-one manner to the cortex. If the cell gets hyperpolarized, T-type calcium
currents generate burst-mode firing which leads to a decrease in the spike transfer. In thalamocortical circuits,
the cell membrane gets hyperpolarized by recurrent inhibitory feedback loops. In the case of reciprocally
coupled excitatory and inhibitory neurons, inhibitory feedback leads to metastable self-sustained oscillations,
which mask the incoming input, and thereby reduce the information transfer significantly.
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I. INTRODUCTION

Spindle oscillations are waxing and waning waves that
originate in the thalamus at the transition to slow wave sleep
in mammals �1�. In a pioneering experiment �2�, spindle os-
cillations have been investigated in a hybrid thalamic circuit
consisting of a biological thalamocortical �TC� and an artifi-
cial reticular �RE� thalamic cell �2�. An artificial cell was
necessary to manipulate selectively the synaptic connection
of the inhibitory feedback from the RE to the TC cell
�Fig. 1�. Spindle oscillations depended critically on the pres-
ence of the synaptic connections between TC and RE cells
�3,4�. Further, the occurrence of spindle oscillations comes
along with a significant decorrelation between input and the
output of the TC cells. Clarification of the relationship be-
tween the occurrence of spindle oscillations and the decrease
in information transmission could help to gain more insight
into the mechanisms which deprive the sensory information
from the consciousness while mammals are sleeping.

Spindle, or bursting, oscillations in excitable media are
widespread observed in a variety of physical �5�, chemical
�6�, and biological �7� oscillators. Typically, the potential of a
bursting neural cell undergoes subsequent shifting between
active and silent phases. In the active phase, the membrane
potential oscillates quickly, and in the silent phase, it evolves
slowly without or only with subthreshold oscillations �8�. In
this work, we focus on bursting or spindle oscillations in
neural systems, and investigate their role for information
transfer through the thalamus. The thalamus, our major gate-
way for all sensory information, relays the incoming infor-
mation depending on the state of arousal �9,10�. To process
and relay information �11� is a generally important, but not
equally well understood, feature of neural systems; here we
contribute to the understanding of the underlying dynamics
of a key mechanism in the thalamocortical loop.

The paper is organized as follows. In Sec. II, we use bio-
physical models of TC and RE neurons interconnected with

realistic model synapses as introduced in �3� and also used in
the hybrid network investigated by Le Masson in �2�. In
Sec. III, we establish an extension of the Hindmarsh-Rose
model �12�. For this purpose, we use dynamically coupled
Hindmarsh-Rose neurons to reproduce the experimental re-
sults of �2�. We show that the Hindmarsh-Rose system has to
be extended by a fourth variable working on a very slow
time scale, in order to describe the experimental results.

For both models, we investigate the influence of the in-
hibitory synaptic connection on the information transfer of
the TC cell and compare the results with the experiment of
Le Masson et al. �2�. An additional goal is to answer the
question whether the complicated biophysical conductance-
based model can be replaced by the much simpler
Hindmarsh-Rose model without loss of the most important
dynamical features. We show how to achieve this by intro-
ducing an extended Hindmarsh-Rose model with an addi-
tional degree of freedom. Some important features are better
reproduced by the extended Hindmarsh-Rose neuron than by
the biophysical model. Our model is by far less computation-
ally costly, yet simple enough to understand dynamical
mechanisms.

FIG. 1. Structure of synaptic connections in a pair of recipro-
cally coupled RE-TC cells.
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II. INFORMATION TRANSFER IN A BIOPHYSICAL
MODEL OF A THALAMOCORTICAL OSCILLATOR

A common approach to model the thalamocortical system
are conductance-based models �13–16�. Descriptions of the
properties of single neural cells can be found for example in
�3,4�. The case of two interconnected cells without external
forcing has been investigated in �4�. To our knowledge the
case of two interconnected cells as shown in Fig. 1 which get
excited by an unregularly distributed realistic synaptic bom-
bardment as used in the experiment of Le Masson et al. �2�
has not been studied in detail upto now. In this section we
will investigate the influence of the inhibitory synaptic con-
nection on the information transfer of the TC cell for this
case. Destexhe et al. �4� model the TC cell and the RE tha-
lamic cell by using a conductance-based single compartment
model. The time evolution of the membrane potentials is
governed by the following cable equations:

CmV̇T = − ITL
− IT − Ih − ITNa

− ITK
− IGABAa

− IGABAb
, �1�

CmV̇R = − IRL
− ITs − IK�Ca� − ICAN − IRNa

− IRK
− IGLU, �2�

where VT is the membrane potential of the TC cell; Cm is the
capacity of the membrane. According to �4�, we included the
following ion currents: The leakage current ITL

and IRL
, the

low-threshold Ca2+ currents IT and ITs, the hyperpolarization
activated current Ih, the Ca2+-activated currents IK�Ca� and
ICAN, and, like in the Traub and Miles �17� model, the fast
Na+ and K+ currents IT/RNa

and IT/RK
, which are responsible

for the generation of action potentials. The synaptic currents
IGABAa

and IGABAb
represent the GABAa and GABAb receptors

in the synapses from RE to TC cells, while IGLU describes the
excitatory synapse from the TC to RE cells.

Destexhe et al. �4� refer to several sources for the descrip-
tion of the ion currents. The kinetic equations of the TC cell
have been described in detail in �15�. The IT kinetics was
taken from Wang et al. �18�. Ih was described by the model
of Destexhe et al. �15�, which incorporates a regulation by
intracellular calcium. For the RE cell ITs was taken from
Huguenard and Prince �19�. The kinetics of the
Ca2+-dependent currents IK�Ca� and ICAN are adjusted to the
clamp data of RE neurons �20�. For both cells, INa and IK
were taken from �17�. The calcium dynamics in both cells
are described by a simple model which was introduced in
�15�. All details are described in Appendix A.

In biology, the typical input signal for the TC cells is a
spike train with unregularly distributed interspike intervals,
which can be modeled by a Poisson process with a refractory
period. For example, the retinal cells fire such unregularly
distributed spikes in darkness or under constant illumination.
The refractory period is necessary because every biological
cell needs some time �r to recover after it has fired a spike,
so the cell cannot fire spikes with arbitrary low interspike
intervals �ISIs�. In our model, the ISI are distributed accord-
ing to the following distribution:

f̃��� = �0 for � � �r

r̄er̄�re−r̄� for � � �r,
�3�

where er̄�r is a scaling factor, r̄=1/100 and �r=30 ms here. If
we stimulate our model by such a modified Poisson process,
we have a computational model for the experiment of Le
Masson et al. �2�, which allows us to compare our computa-
tional model with the experiment.

A. Simulation results of the biophysical model:
Spindle oscillations, waxing and waning, and

influence on information transfer

With the TC and RE cells interconnected, the computa-
tional thalamic circuit receiving this realistic synaptic bom-
bardment �2� showed waxing and waning oscillations. These
spindle sequences consisted of bursts of 8–10 Hz oscilla-
tions lasting a few seconds, and were separated by silent
phases of around 8–10 s. The periodical occurrence of this
oscillations is very similar to biological spindle waves which
occur in sleep-related states. As in the experiment, each spin-
dling state is terminated by an after-depolarization of the
membrane potential. The reason for this effect is the hyper-
polarization activated current Ih �see Appendix A�; when this
after-depolarization adds to the synaptic bombardment, it
forms a depolarization which deactivates the low threshold
Ca2+ current IT and subsequently blocks the input signal
transfer.

B. Measuring the information transfer

During the spindling state, the firing pattern of the TC
cells �excitor�, which is very different from the input �see
Figs. 2�a� and 2�b��, shows that obviously the information
transfer of the input is low. Le Masson et al. �2� answer the
question whether this low transfer is still reliable, by calcu-
lating two different indices. First, the contribution index
�TCI� examines the TC cell discharge and quantifies the per-
centage of output spikes Nout which are precisely correlated
with retinal input spikes. It estimates the reliability with
which a TC spike can be considered as being triggered by an
input spike rather than being spontaneous. It is computed as
the peak of the cross correlation, normalized by the number
of output spikes. Second, the correlation index �TCC� mea-
sures the global efficiency of the input-output spike transfer
and indicates the ratio of input spikes being actually trans-
mitted as output spikes in the TC neuron. It is computed as
the peak of the cross correlation between retinal and TC
neuron spikes, normalized by the number of retinal cell
spikes. To be able to compare our numerical results with the
experimental results of Le Masson et al. �2� quantitatively,
we will use exactly these measures here.

To be able to compare the numerical results obtained from
the biophysical model with the simplified model introduced
in this paper, we will define two new measures for the infor-
mation transfer which are equivalent to the measures used by
Le Masson et al. in �2�, but do not depend on the detailed
form of the signals. First, the signal-to-noise ratio �TSN� ex-
amines the amplitude of the TC-cell signals and quantifies
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the percentage Ntr of output spikes Nout which are exactly
triggered by an input spike; such it is a measure equivalent to
the TCI used. An output spike is considered to be triggered by
an input spike if it occurs within a delay of �50 ms after an
input spike. As the TCC, it is a measure for the reliability with
which an output spike can be considered as being triggered
by an input spike rather than being due to the intrinsic dy-
namic of the circuit

TSN =
Ntr

Nout
. �4�

Second, the transfer efficiency TTE measures the global effi-
ciency in the input-output spike transfer, and indicates the
ratio of input spikes being actually transmitted as output
spikes, obviously it is equivalent to the measure TCC. It is
computed by the number of triggered spikes Ntr divided by
the total number of input spikes

TTE =
Ntr

Nin
. �5�

The difference between the measures �TSN� and �TCI� is that
our measure checks if an output spike occurs within a certain
delay after an input spike, while the contribution index
counts the spikes at a fixed time delay defined by the maxi-
mum of the cross correlation. The TCC and TTE differ in the
same way as mentioned above, further TTE only takes values
between zero and one. As our measures only count the
spikes, and such treat spikes like binary events, they can be
used for any spiking system and allow a comparison of the
transmission properties of different models. The disadvan-
tage is that they do not shed light on the amplified details of
a signal system such as TCI and TCC do.

These two measures, the transfer efficiency and the trans-
fer reliability, are necessary to characterize the information
transfer appropriately. The usage of two different transfer
measures allows us to answer the question whether the trans-
fer gets blocked or if incoming signals get masqued by au-
tonomous oscillations of the system. The results are given in
Fig. 3.

In the presence of strong inhibitory feedback �gGABAa
=0.1 mS and gGABAb

=0.01 mS� the �TCI� and �TSN� were low
��0.4�, indicating that less than half of the output spikes
were triggered by an input spike; thus the thalamus is not
transferring spikes in a one-to-one manner. To answer the
question whether the degree of inhibition produced by the
RE neurons could directly control the precision of spike
transfer, we varied the strength of inhibition. Our simulations
show that the influence of the inhibitory feedback is by far
not so strong as in the experiment �2�. In our computational
model, the TSN varied only between �0.6 and �0.4. In
agreement with the experimental data �2�, the global effi-
ciency of spike transfer TTE was not significantly different in
the absence or presence of inhibitory feedback.

C. Discussion of the biophysical model

Altogether, our simulation cannot reproduce the transmis-
sion behavior of the thalamic circuit observed �2� experimen-
tally. When we compare the numerical achieved values for

FIG. 2. �Color online� �a� Spontaneous spindle activity in the
computational thalamic circuit. The TC cell receives artificial syn-
aptic retinal bombardment, modeled by a Poisson-distributed spike
train. The RE-TC oscillator shows spindle activity. �b� Detail of �a�.
�c� Total synaptic current injected into the biological TC cell and
simultaneous voltage of the TC and RE cell. Bottom: The hyperpo-
larization of the TC cell activates the IT current, what initiates a
post-inhibitory rebound burst �see also Fig. 5�. Calibration bars:
10 s, 20 mV �a�; 1 s, 20 mV �b�; 10 ms, 6 nA, 20 mV, 1 nA �c�.

FIG. 3. �Color online� Percentage of output spikes triggered by
an input spike �TSN� �solid� and transfer efficiency TTE �dashed� for
different values of the inhibitory feedback. Both indices show no
significant change when the inhibitory feedback is varied within the
stability borders.
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the TCI and TCC �Fig. 4� quantitatively with the values from
the experiment, we find that the effect of input-output spike
decorrelation is present, but lacks some features. First, even
without or very low inhibitory feedback, the TCC is not more
than �25; in the experiment the TCC varied in a range from
about 85–45 �see Fig. 3�e� in �2��. For a biological system
this would mean that the animal would always be drowsy.
Second, the system does not allow precise up and down
regulation of the signal reliability in a wide range, the TCI
only varies in range from around 0.7–0.35, that is about a
factor 2, while in the experiment the TCI varies from about
0.8–0.2 �see Fig. 3�d� in �2�� which corresponds to a factor 4.
Further, spindle oscillations occurred even with very little or
no inhibitory feedback, which is also in contrast to the ex-
perimental results.

At this point it appears questionable whether the detailed
biophysical model described above—with its high dimen-
sionality and parameter space quite too detailed to gain sys-
tematic understanding—provides the appropriate level of de-
scription to analyze coupled systems, e.g., of the
thalamocortical loop investigated here. We will however use

the biophysical model to establish our simplified model. As
the biophysical model incorporates many features of realistic
biological neurons, it allows us to identify the key elements
which may be responsible for sleep spindle oscillations. The
slow repetition rate of spindling �0.3–0.1 Hz� is due to in-
trinsic mechanisms of the TC cell. The slow variables F2 and
S2 �Fig. 11� of the Ih current �see Sec. III D and Appendix A�
play the key role for these long silent phases. The spindling
starts in the TC cell due to the hyperpolarization low thresh-
old Ca2+ current IT �see Figs. 2�c� and 5�. The spindling
terminates due to the activation of the Ca2+ activated current
IH �see Fig. 5�. The frequency of the spindling is determined
by intrinsic properties of the RE cell, as shown by Destexhe
in �4�, but also the intrinsic properties of the inhibitory syn-
apses play a role. To provide an overview, Fig. 5 shows a
schematic diagram of the mechanisms leading to spindle os-
cillations.

Unfortunately, due to the complexity of the high-
dimensional biophysical system, the connection between bio-
physics and dynamics is hard to unravel. Further, the com-
putational effort is very high, making studies of networks
almost impossible. To solve these problems, we propose a
reduced model to reproduce the experimental data of Le
Masson et al. by using the simpler Hindmarsh-Rose �12�
type neurons, and modify them in a way that the features
described above are reproduced.

III. THE REDUCED SYSTEM: AN EXTENDED
HINDMARSH-ROSE MODEL

A. The Hindmarsh-Rose model

The Hindmarsh-Rose equations are a simple polynomial
model of bursting in thalamic cells, which reproduce several
features, like for example rebound bursts, of more compli-
cated biophysical models �3,21,22�. The original Hindmarsh-
Rose equations are given by

FIG. 4. Averaged contribution �TCI� �a� and correlation �TCC�
�b� indices versus synaptic strength.

FIG. 5. Schematic diagram il-
lustrating the generation mecha-
nism of spindle oscillations. We
distinguish two cycles: First, the
spindle cycle is responsible for the
spiking; the system runs several
time through it before the waxing
and waning cycle is activated,
leading to bursts of oscillations.
The slowly decaying current Ih

leads to the long silent epochs
during which spike transfer is
blocked. Altogether, the interplay
of the currents IT and Ih plays an
important role for the genesis of
spindle oscillations. �See also
Figs. 2 and 3.�
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v̇ = w − v3 + 3v2 − z + I�t� , �6�

ẇ = 1.8 − 5v2 − w , �7�

ż = ��3.3�v + 1.56� − z� , �8�

where v is the voltage, w is a recovery variable, I�t� is an
external forcing, and z is a slow variable. In order to under-
stand the behavior of Eqs. �6�–�8�, we first consider the limit
�→0, so z�t�=z, which results in a planar reaction-diffusion
system. This fast subsystem is responsible for the spiking
dynamics of the Hindmarsh-Rose system. The dynamics of
this subsystem is also crucial for ��0. This procedure is
called singular approximation, or slaving principle, and is
widely used to separate fast and slow subsystems �23–25�.
Slow variables �here z� can be treated as slowly varying pa-
rameters and the rest of the system can be studied as a func-
tion of these new parameters. We apply this method to the
Hindmarsh-Rose model.

To understand the influence of the variable z on the �v ,w�
subsystem, Eqs. �6� and �7� with I�t�=0 are transformed to a
Lienard system �7,26�, yielding �Appendix B 2�

0 = v̈ + f�v�v̇ + g�v� , �9�

where g�v�=v3+2v2−1 can be considered as the gradient of
a potential ��v ,z�, and f�v�=1−6v+3v2 as a damping term.
The roots of g�v ,z� give the fixed points of the equation.
Depending on the parameter z, there exist either one or three
real roots.

The bifurcation diagram of Eqs. �6� and �7� as a function
of z is shown in Fig. 6 �the bifurcation diagram was com-
puted with the auto interface �27� of xpp �28��. If we start
with z=2 from the fixed point �v=−2.05,w=−19.67� of the
fast subsystem and go to the left in the bifurcation diagram,
the stable fixed point loses its stability by a saddle node
bifurcation at z�0.6148. For values of z between
�0.6148,0.8891�, a stable limit cycle and a stable fixed point
coexist. At z=−10.4, the upper branch of the steady state

loses stability by a Hopf bifurcation �for further details see
�7,29��. Here we will only focus on values of z between
�−5, +5�.

B. Periodic forcing of the Hindmarsh-Rose neuron

Another important case is that of z being a periodic func-
tion p�t�; this is the case for certain values of a constant
external forcing I �29�, or when the neuron is coupled to
another periodic spiking or bursting neuron. So in a next step
we consider the fast �v ,w� subsystem with periodic forcing

v̇�t� = w − v3 + 3v2 + p�t� ,

ẇ�t� = 1.8 − 5v2 − w , �10�

or, in Lienard form

p�t� = v̈ + f�v�v̇ + g�v� , �11�

where f and g are defined as above. According to �30�, theo-
rem 4.3.1 and 4.3.3, Eq. �11� has a nonconstant periodic
solution with the same period as the forcing term p�t� if
several conditions �i–vi� �given in Appendix B 4� are ful-
filled. Hence, we make the following proposition: When p�t�
is a T-periodic function, then �11� has a periodic solution
with the same period T. The detailed proof is in Appendix B
4.

For illustration, we show the behavior of the Hindmarsh-
Rose Eqs. �6�–�8� excited with a constant forcing I�t�= I0

�see Fig. 7�, thus again z�t� is a periodic function. This is an
example for a typical intrinsic burster, where the slow vari-
able slaves the fast subsystem �27�. The theorem presented
above proves that the fast �v ,w� subsystem of the
Hindmarsh-Rose model shows mode locking when it is
driven by a periodic forcing, no matter what frequency or
amplitude this forcing has.

If we assume � to be small ��0.006 as used by �31��, z
can be treated like a slowly varying parameter in the �v ,w�
system �10�. To understand the influence of v on Eq. �8�, we
write it in the form of a relaxation process

FIG. 6. Maximum and or minimum bifurcation diagram of v in
the fast subsystem �4� as a function of z. Heavy lines indicate stable
fixed points �limit cycles� and thin lines indicate unstable fixed
points �limit cycles�. �See Appendix B 3.�

FIG. 7. �Color online� v�t� �black� and z�t� �red, upper curve�
with I=1.0. When z�t� is periodic, v�t� oscillates with the same
period; thus the slow variable z�t� slaves v�t�.
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ż = − ��z − z��v�� , �12�

where z��v�=3.3�v+1.56�. As � is very small, the fast dy-
namics of v has only little influence on Eq. �12�, as its own
dynamics is too slow to follow the fast z��v�. Because of
this, z will arrive in a steady state if v is spiking quickly, and
then just oscillate with a very little amplitude around it. This
effect leads to the so-called spike frequency adaption �for
details see �12��, which is also observed in biological neu-
rons �22�. For small enough values of I�t� this effect can also
lead to an effect similar to intrinsic bursting �29�.

C. Post-inhibitory rebound bursts in
the Hindmarsh-Rose neuron

Post-inhibitory rebound bursts are a dynamical feature be-
ing also present in the biophysical neuron model �3�. As it is
crucial for spindle oscillations and for the information trans-
fer, we will describe it in detail here, see also Fig. 8. If the
Hindmarsh-Rose model �12� is hyperpolarized for a period
similar to the burst duration, the adaption current z will de-

crease below its steady state. If the hyperpolarizing current is
released, the z current stays below its steady state for some
time due to its slow timescale. As a consequence, the model
behaves as if some extra current had been applied, so it will
cross the saddle node bifurcation in Fig. 6 and stay on the
limit cycle. Due to the spikes, z will increase above its steady
state, stopping the burst �see Figs. 8 and 9�. Due to the slow
time scale, a post-inhibitory rebound burst will only appear if
slowly decaying dynamic synapses are used, as otherwise z
will not decrease below its steady state. In the biophysical
model, the same effect occurs due to the low threshold cal-
cium current IT �see Fig. 2�c�� �3�, so the variable z can be
interpreted as a calcium current.

In reciprocally coupled neurons, the effect described
above leads to self-sustained oscillations if the excitor gets
activated by a single input spike; this effect is an example for
so-called hard-excited self-oscillations �25�. During this os-
cillation, the two neurons exhibit antiphase synchronization.
We show this for the case of two Hindmarsh-Rose neurons,
which are coupled like in a typical thalamocortical circuit
�see Fig. 9�.

D. Motivation of a simplified calcium current:
Extending the Hindmarsh-Rose model

The self-sustained oscillations in Fig. 10 are stable and do
not terminate; this is contrary to the experimental observa-
tions of Le Masson et al. �2�. A spindle oscillation or a burst
consists of a series of metastable self-oscillations enhanced
by rebound bursts which terminate after a few seconds.
Above we argumented that the slow variable z can be inter-

FIG. 8. �Color online� v�t�, z�t�, and I�t�. The system shows a
post-inhibitory rebound burst after a hyperpolarizing step of
I�t�=−0.5 and a duration of 70 ms.

FIG. 9. �Color online� Right: Reciprocally coupled RE and TC
cell. Left: If the excitor cell gets activated by an external pulse, it
excites the inhibitor cell, which leads to an inhibitory current. This
current hyperpolarizes the excitor cell and evokes a rebound burst
in it, and the mechanism repeats, which leads to self-sustained
oscillations.

FIG. 10. �Color online� Reciprocally coupled inhibitor and ex-
citor; without the h current, the oscillation does not terminate.
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preted as a calcium current, and such corresponds to the low
threshold calcium current IT in the biophysical model. The
schematic diagram in Fig. 5 shows that the reason for the
termination of the oscillation is a further ion current Ih
�2–4,32�. As the original Hindmarsh-Rose model does not
incorporate a variable which corresponds to the Ih current in
the biophysical model, we will extend the Hindmarsh-Rose
model by an equation motivated directly by the dynamics of
Ih in the biophysical model. Destexhe et al. �4� model Ih by a
double activation kinetic, consisting of slow and fast activa-
tion variables, regulated by intracellular Ca2+

S0 � S1, �13�

F0 � F1, �14�

were S0/1 and F0/1 represent the closed and open states of the
slow and fast activation gates, respectively. The open state
gates are assumed to have n bindings for Ca2+ which lead to
the open bounded gates S2 and F2,

S1 + nCa2+ � S2, �15�

F1 + nCa2+ � F2. �16�

In this model the activation function of Ih is shifted during
the oscillatory phase by the entry of Ca2+, and thus termi-
nates the oscillation. Destexhe et al. �4� find that the length
of the silent phase and of the oscillatory phase were directly
proportional to the time constant of intracellular Ca2+ bind-
ing to Ih channels, k2

−1. Further it is assumed that the binding
of Ca2+ is critical for the onset and termination of the oscil-
latory phase �4�. So the length of the oscillatory phase de-
pends on the rate of rise of the variables S2 and F2, while the
length of the silent phase depends on the rate of relaxation of
S2 and F2 back to their resting values �see Fig. 11 and �4��.
According to �A20�, both the length of rising and relaxation
of S2 �red� and F2 are proportional to k2

−1. As Fig.11 shows,
F2 only displays small variations of amplitude compared to
S2 and therefore plays a less important rule. In our further
simplification we will neglect the influence of F2. The slow
variable S2 slaves the system and switches between the os-
cillatory and the resting state leading to waxing and wanning
oscillations �4�. Our simplified model will be motivated from
the kinetic equation of S2. As the transition from S0 to S1 is
much faster than the one from S1 to S2, we will assume it to
be instantaneous, what leads to S2�S0, so we get

S0 + nCa2+ � S2. �17�

In Eq. �5� in �4�, the number of binding sites n for Ca2+ is
assumed to be 2, in our model we use n=1 with the back-
ward rate k2=4	10−4, the forward rate k1=k2 / �5	10−4�
and C= �Cain� / �5	10−4�, where �Cain� is the intracellular
calcium concentration, thus altogether we get

S2̇ = − k2�S2 − CS0� . �18�

The essential features of Eq. �18� can be summarized as fol-
lows: S2 opens and closes proportional to the same rate con-
stant k2; due to C, the activation depends critically on the

concentration of intracellular Ca2+. This features should also
be present in our simplified model. In the Hindmarsh-Rose
model the calcium current is mimicked by the variable z
�12�, in our model for the h current will get activated by the
variable z. The rate of activation and deactivation will be
equal to the constant used in the biophysical model. For con-
venience and to be consistent with the notation used in bio-
physics, we call this current h

ḣTC = − k2�hTC − 0.88�0.9 − zTC�� . �19�

As z decreases when the cell gets hyperpolarized, we use the
difference between the maximum magnitude of z and z itself
as an activation term in �19�. In order to reproduce the be-
havior of the biological TC cell, we extend the Hindmarsh-
Rose equations as follows:

v̇TC = wTc − vTC
3 + 3vTC

2 − zTC − hTC, �20�

ẇTC = 1.8 − 5vTC
2 − wTC, �21�

żTC = ��3.3�vTC + 1.56� − zTC� , �22�

ḣTC = − 0.0004�hTC + 0.88�0.9 − z�� . �23�

FIG. 11. �Color online� Top: Time course of the gating variables
S2 �red, upper curve� and F2 �green, lower curve� during a spindle
cycle. Bottom: The membrane potential VTc of the biophysical
model.
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Equations �20�–�23� define our central model, and will be
used to model the reciprocally coupled neurons in the re-
mainder. As Fig. 12 shows, the time course of the variable h
is very similar to the time course of s2 in the biophysical
model. To understand the influence of the variable h we pro-
ceed in the same way as before. The time scale of the dy-
namics of h is less than a tenth than the time scale of z. As
declared above, the reason for the self-sustained oscillations
is the after-hyperpolarization activation by the variable z. In
the presence of h, the slowly varying parameter in the �v ,w�
system is the sum �z�t�+h�t��. As h�t� gets activated by z�t�,
after some rebound bursts the sum �z�t�+h�t�� is below the
threshold of the �v ,w� system, as a consequence, the oscil-
lation terminates. When the excitor cell is inactive, there are
no more inhibitory currents, that means that t is inactive too,
so h decays slowly until it is small enough that the system
can get activated again by an input spike.

E. Reciprocally coupled TC-RE neurons
using the extended Hindmarsh-Rose model

As the h current is absent in the biological RE neuron, we
have to extend the Hindmarsh-Rose system by the h Eq. �23�
for the TC neuron only

v̇TC = wTC − vTC
3 + 3vTC

2 − zTC − hTC + IGABA + I�t� ,

ẇTC = 1.8 − 5vTC
2 − wTC,

żTC = 0.006�4�vTC + 1.56� − zTC� ,

ḣTC = − 0.0004�hTC + 0.88�0.9 − z�� ,

v̇RE = wRE − vRE
3 + 3vRE

2 − zRE + IGLU,

ẇRE = 1.8 − 5vRE
2 − wRE,

żRE = 0.006�4�vRE + 1.56� − zRE� . �24�

FIG. 12. �Color online� Top: Time course of h during a spindle
cycle. Bottom: The membrane potential vTc of the extended
Hindmarsh-Rose model. FIG. 13. �Color online� Spontaneous spindle activity in our

computational model �the numerical values of the voltages are
scaled by a factor of 30 to match with the biophysical values�.
Similar rescalings have been also necessary in the underlying
Hindmarsh-Rose model �see, e.g. �22��. �a� The computational cir-
cuit: A TC cell �excitor� modeled by the extended Hindmarsh-Rose
model is reciprocally coupled to a model RE cell �inhibitor� repre-
sented by the original Hindmarsh-Rose model. The TC cell receives
artificial synaptic retinal bombardment modeled by a Poisson dis-
tributed spike train. Like in the experiment the system shows
spindle activity. �b� Detail of �a�. �c� Like in Fig. 8.
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IGABA and IGLU are governed by Eqs. �B4� and �B5� in Ap-
pendix B 1, respectively. The external input was modeled as
described above for the biophysical model, with modified
parameters adapted to the Hindmarsh-Rose model, r̄ was
1/100 and �0 was 30 ms. If we stimulate our model by such
a modified Poisson process, we have a computational model
for the experiment of Le Masson et al. �2�, which allows us
to compare our computational model with the experiment
and the biophysical model �3�, so that we can validate our
extension of the Hindmarsh-Rose model.

A comparison of Fig. 13 and ��2�, Fig. 2� shows that our
system reproduces the experimental results of Le Masson et
al. �2� quite well. During the spindling state, the firing pat-
tern of the TC cells �excitor�, which is very different from

the input, shows that the information transfer of the input is
low. The question whether this low transfer is still reliable is
calculated in the same way as for the biophysical system.
With a strong inhibitory feedback, the TSN was low, showing
that most of the TC spikes where not triggered by an input
spike and thus that the system is not transferring spikes in a
one-to-one manner. This result encouraged us to screen the
strength of inhibition to test if recurrent feedback inhibition
could be a way to control the precision of input-output trans-
fer in a wide range, or if there is just a switching between a
relay state and masquerading state. Our numerical investiga-
tion leads to the following results. An increase of the inhibi-
tory coupling strength leads to a smooth decrease in TSN
from a maximum value of around 1 to a minimum value of
less than 0.3 �Fig. 14�. Despite this significant decrease in the
reliability of spike transfer, the efficiency of spike transfer
TTE was not significantly diminished by the strength of the
inhibitory coupling �Fig. 14�. Thus inhibitory feedback has a
direct decorrelating effect, which is able to reduce the reli-
ability of the spike transfer.

F. Dynamical behavior of coupled TC-RE neurons
using the extended Hindmarsh-Rose model

As we argued in Sec. III A for the Hindmarsh-Rose
model, Destexhe et al. �4� use singular approximation to
characterize the spindle oscillations as a transition between a
hyperpolarizing stationary phase and an oscillatory phase.
Here we will apply this method to our simplified model of a
thalamocortical oscillator. In Fig. 13, the h current evolves
according to a much slower time scale as the dynamics of the
coupled TC-RE neurons.

We assume h to be a slow varying parameter in �24� with
I�t�=0, so we consider the limit k2→0 in �19�. We will con-
sider h as bifurcation parameter of �24� in an interval be-

FIG. 14. �Color online� Percentage of output spikes triggered by
an input spike. An increase of the strength of the inhibitory coupling
gGABA comes along with a significant decrease in the reliability of
the information transfer. As in the experiment of Ref. �2� and
in the biophysical model, the transfer efficiency does not vary
significantly.

FIG. 15. Bifurcation diagram
of �24� with hTC treated as a
slowly varying parameter; solid
lines indicate stable fixed points,
dashed lines unstable fixed points,
filled circles stable limit cycles,
open circles unstable limit cycles.
For extreme values of h, the sys-
tem is monostable, i.e., either a
stable fixed point or a stable limit
cycle coexist.
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tween −1 and 1.5 as a parameter. In this range of h the
dynamical state of the system can be divided in three areas:
For high values of h the system is in a stable resting state, for
intermediate values of h both a stable resting state and a
stable oscillatory state exist, separated by an unstable limit
cycle. For negative values of h the stable resting state gets
unstable, while the stable oscillatory state persists. The tran-
sition between the stable fixed point and the oscillatory state
occurs by a subcritical Hopf bifurcation �33�. The existence
of a region of parameters where stable solutions overlap is
typical for a subcritical Hopf bifurcations; our system shows
this typical behavior in a wide range of the bifurcation pa-
rameter. In this states the system is bistable, i.e., a stable
fixed point and a stable limit-cycle coexist �see Fig. 15�. In
this area, the state of the system depends on its history: If the
initial conditions or the past state of the system lie within the
basin of attraction of the limit cycle, the system exhibits
stable oscillations; if the starting point lies within the basin
of attraction of the fixed point, the system rests on the fixed
point. These two attractive areas are separated by an unstable
limit cycle. Further, the system can be switched between
these two states by an input pulse.

G. Discussion of the transfer properties of the extended
Hindmarsh-Rose model

The h current switches the system between two existing
dynamical states, namely a fixed point and a bistable state
where a limit cycle and a fixed point coexist. Without this
further current �i.e., h=0�, two reciprocally coupled
Hindmarsh-Rose neurons exhibit so-called hard self-
excitation �25� as response to an input spike, resulting in
stable self-sustained oscillations. The h current makes this
oscillatory state metastable, resulting in waxing and waning
oscillations. An increase of the inhibition changes the re-
sponsivity of the system: Without, or with only little inhibi-
tion, the system responds to an input pulse with an output
spike, so that spikes get transmitted in a one-to-one manner.
With high gain in inhibitory feedback, the system responds
to an input spike by an output burst �range B in Fig. 15�,
followed by a silent period where transmission is totally
blocked �range A in Fig. 15�. During the burst, the system is
in an autonomous self-oscillatory state which masquerades
the input, this leads to an increase of the TSN. As the system
is still excitable, but with a different responsivity the TTE
does not change as strong as the TSN. So the transmission
behavior depends critically on the rate of rise and fall of the
h equation. This insight might also help to improve the bio-
physical model in terms of information transfer.

IV. CONCLUSIONS

We have shown that an extended Hindmarsh-Rose model
is able to reproduce the behavior of a biological thalamocor-
tical relay neuron in the recent experiment of Le Masson et
al. To gain more insight into the dynamical mechanisms, a
simplification or reduction of the detailed biophysical model,
which did not convincingly reproduce the experimentally ob-
served decrease of the signal-to-noise ratio, was necessary.

The widely used Hindmarsh-Rose model however does not
show the characteristic waxing and waning oscillations. Fur-
ther it does not exhibit the quiescence periods necessary for
transfer of information. Especially, we have analytically
proven that the fast subsystem of the Hindmarsh-Rose model
gets slaved by periodic forcing, which can lead to intrinsic
bursting if the forcing is slow. To account for the waxing and
waning mechanism, we propose an extended Hindmarsh-
Rose neuron model for the TC cell, directly motivated from
the biophysical model, taking the low threshold calcium cur-
rent explicitly into account.

In this paper, we have demonstrated that our extended
Hindmarsh-Rose model serves as a computational model for
the setup in the Le Masson et al. experiment, showing that
the information transfer can be adjusted within a wide range
by the gain of the recurrent feedback inhibition. Our numeri-
cal investigations strongly suggest that the low threshold cal-
cium current plays an important role for the information
transfer in thalamocortical circuits. From the technical sim-
plicity of our approach and its agreement with the experi-
ment, this approach may give rise to similar models for neu-
ral systems where a third time scale is apparent, and a second
slow degree of freedom is necessary to describe the dynam-
ics.
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APPENDIX A: THALAMOCORTICAL CIRCUIT

The thalamocortical circuit consists of a pair of TC and
thalamic RE neurons connected as shown in Fig. 1. For each
TC and RE cell several ion currents were included which
will be described in detail here. All intrinsic currents are
described by the same general equation �16�

Ij = ḡjm
MhN�V − Ej� . �A1�

Here the current Ij is the product of the maximal conduc-
tance, gj, activation m and inactivation h variable, and the
difference between the membrane potential V and the Nernst
reversal potential Ej. The powers N and M are the respective
numbers of ion channels to be open synchroneously. The
gating of a membrane channel is described by a first order
kinetic scheme

C →

�V�

O , �A2�

C ←
��V�

O , �A3�

where O and C stand for the open and the closed state of the
gate, with 
�V� and ��V� as the transition rates. According to
the Hodgkin-Huxley model �20�, the variables m and h rep-
resent the fraction of independent gates in the open state and
are described by simple first order differential equations

MAYER, SCHUSTER, AND CLAUSSEN PHYSICAL REVIEW E 73, 031908 �2006�

031908-10



ṁ = −
1

�m�V�
�m − m��V�� , �A4�

ḣ = −
1

�h�V�
�h − h��V�� . �A5�

The steady states m��V� and h��V� and the time constants
�m/h�V�, respectively, can be written as functions of the tran-
sition rates 
 and �, using x� �m ,h�, as

�x�V� =
1


x�V� + �x�V�
,

x��V� = 
x�V��x�V� . �A6�

1. The TC cell

Here we summarize the results of the previously men-
tioned investigations of TC cell membrane properties. The
membrane potential of the TC neuron is given by

CmVT
˙ = − ITL

− IT − Ih − ITNa
− ITK

− IGABAa
− IGABAb

.

�A7�

The area of a TC cell membrane is about 2.9	10−4 cm2

which is according to a cell capacity of Cm=0.29 nF. All
constants used in the simulations correspond to a cell of this
size.

The leakage current ITL
is the only passive current, and is

governed by the Ohm law

ITL
= gTL

�VT − EL� , �A8�

where gTL
=0.05 mS, EL=−86 mV.

All the other currents are active currents, and more com-
plicated, as detailed below.

The sodium current INa has the form

ITNa
= gNam�t�3h�t��VT − ENa� , �A9�

with gTNa
=30 mS and ENa=50 mV. In addition we have for

the gating variables m�t� and h�t�

m��VT� =

m�VT�


m�VT� + �m�VT�
,

h��VT� =

h�VT�


h�VT� + �h�VT�
,

�m�VT� =
1


m�VT� + �m�VT�
,

�h�VT� =
1


h�VT� + �h�VT�
, �A10�

where


m�VT� = 0.32
�VT + 37�

1 − exp	−
VT + 37

4

 ,

�m�VT� = 0.28
�VT + 10�

exp	VT + 10

5

 − 1

,


h�VT� = 0.128 exp	−
VT + 33

5

 ,

�h�VT� =
4

exp	−
VT + 10

5

 + 1

. �A11�

With Eqs. �A4� and �A5� the sodium current is completely
described.

The potassium current IK has the form

ITK
= gTK

m�t�4�VT − Ek� , �A12�

with gTK
=2 mS and Ek=−95 mV. The gating and transition

variables are given by

m��VT� =

m�VT�


m�VT� + �m�VT�
,

�m�VT� =
1


m�VT� + �m�VT�
,


m�VT� = 0.032
�VT + 35�

1 − exp	−
VT + 35

5

 ,

�m�VT� = 0.5 exp	−
VT + 40

5

 . �A13�

With Eq. �A4� the potassium current is completely described.
The low threshold Ca2+ current IT is taken to be

IT = gCam�t�3h�t��V − ET� , �A14�

where gCa=1.75 mS and the reversal potential ET depends on
the Ca2+ concentration inside ��Ca�in� and outside ��Ca�out�
the cell. It is defined by the Nernst equation

ET = 1000
RT

2F
ln

�Ca�out

�Ca�in
, �A15�

where R=8.314 41 J /K mol, T=309.15 K, F
=96489 C /mol, and �Ca�out=2 mM is considered to be con-
stant. In the remainder, all concentrations will be denoted by
square brackets, following an usual convention �see e.g.,
�13�.

The calcium dynamics in the cell are described by a
simple model which was introduced in �13�,

d�Ca�in

dt
= − AIT − KT�Ca�in/��Ca�in + Kd� , �A16�

where A=0.179 m mol/ms �A ,KT=10−4 m mol/ms and
Kd=KT.

The gating variables are governed by the following sys-
tem which was proposed by Wang �18�
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ṁ = ��m�VT��−1�m − m��VT�� ,

ḣ = 
1�VT��1 − h − d − K�VT�h� ,

ḋ = 
2�VT��K�VT��1 − h − d� − d� . �A17�

In addition, for this current the constants are

m��VT� = �1 + exp	VT + 65

7.8

�−1

,

�m�VT� = 0.15m��VT��1.7 + exp	−
VT + 30.8

13.5

� ,


1�VT� = exp	−
�VT + 162.3�

17.8

 0.26,

K�VT� =�0.25 + exp	 �VT + 85.5�
6.3


 − 0.5,


2�VT� =
1

�2�VT��K�VT� + 1�
,

�2�VT� =
62.4

1 + exp	VT + 39.4

30

 . �A18�

The numerical values are fits to experimental data �19�.
The hyperpolarization-activated cation current Ih finally

is described by

Ih = gh�S1 + S2��F1 + F2��VT − Eh� , �A19�

where gh=0.15 mS and Eh=−43 mV. The gating variables
for this current are governed by

S1̇ = 
s�Vt�S0 − �s�Vt�S1 + k2�S2 − CS1� ,

F1
˙ = 
 f�Vt�F0 − � f�Vt�F1 + k2�F2 − CF1� ,

S2̇ = − k2�S2 − CS1� ,

F2
˙ = − k2�F2 − CF1� , �A20�

where C= �Cain� / �5	10−4�, k2=4	10−4, the rate constants

s/f�Vt� and �s/f�Vt� are related to the activation function H�

and the time constants �s/f


s�Vt� = H�/�s,


 f�Vt� = H�/� f ,

�s�Vt� = �1 − H��/�s

� f�Vt� = �1 − H��/� f , �A21�

where

H� = �1 + exp	Vt + 68.9

6.5

�−1

,

�s = exp��Vt + 183.6�/15.24� ,

� f = exp	Vt + 158.6

11.2

�1 + exp	Vt + 75

5.5

� .

�A22�

This makes the biophysical description of TC cell complete.
While it contains a lot of simplifications, for example the
single compartment assumption, it reproduces almost all im-
portant features of TC cells quite good. We will use this
model in our computer experiment to verify theories ob-
tained by using simplified models. For more details see �15�.

2. The RE cell

The membrane potential of the thalamic RE neuron is
governed by the cable equation

CmVR
˙ = − IRL

− ITs − IK�Ca� − ICAN − IRNa
− IRK

− IGLU.

�A23�

For the RE cell the membrane capacity is Cm=0.143 nF, the
leakage conductance is gRl

=0.05 mS and the reversal poten-
tial of the leakage current is EL=−80 mV. This model of
thalamic RE cell was introduced by Destexhe et al. in �34�.

The equations for the sodium IRNa
and potassium IRK

cur-
rent in the RE cell are the same as for the TC cell, except that
the conductance gNa=100 mS is different. The description of
the RE cell potassium current is reached by putting gK
=10 mS.

The kinetics of the low threshold Ca2+ current ITs was
established as a model for voltage clamp data on rat RE cells
using a so-called m2h formalism �19�

ITs = gTsm�t�2h�t��VR − ETs� , �A24�

where gTs=1.75 �S and ETs depends on the calcium concen-
tration in the same way as described for the TC cell. The
calcium dynamics are described by Eq. �A9�, when IT is
replaced by ITs. In addition we have for this current

m��VR� = �1 + exp	−
VR + 52

7.4

�−1

,

�m�VR� = 1 +
1

3
�exp	VR + 27

10



+ exp	−
VR + 102

15

�−1

h��VR� ,

=�1 + exp	VR + 80

5

�−1

,
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�h�VR� =
85

3
+

1

3
�exp	VR + 48

4

 + exp	−

VR + 407

50

�−1

.

�A25�

The full kinetics of the IT current is reached if m�, �m, h�,
and �h are inserted in Eqs. �A4� and �A5�.

The calcium dependent currents: The RE cell possesses
further two calcium dependent currents the slow K+ current
IK�Ca�, and the slow nonspecific cation current ICAN. Accord-
ing to �15� they are modeled as voltage-independent currents
described by Eq. �A1� with M =2 and N=0. The activation
variable m obeys

ṁ = 
�Cai�2�1 − m� − �m , �A26�

where 
 and � are rate constants and �Cai� is the intracellular
calcium concentration. For IK�Ca� 
=48 ms−1, mM−2, and
�=0.03 ms−1, for ICAN, 
=20 ms−1, mM−2, and �
=0.002 ms−1. With this the description of the RE cell is com-
plete.

3. Synaptic currents

Kinetic models of synaptic currents have been directly
fitted to experimental data �3�, based on whole cell recorded
synaptic currents obtained in hippocampal neurons �35�. The
GABAA and GLU �=glutamate� receptor mediated currents
are both represented by a first order kinetic scheme �36�

C + T � O , �A27�

where the transition between closed �C� and open �O� states
depend on the binding of the transmitter �T�. The current is
given by

Isyn = gsyn�O��t��V�t� − Esyn� , �A28�

where gsyn is the maximal conductivity and Esyn is the rever-
sal potential. For AMPA receptors Esyn=0 mV and for
GABAA receptors Esyn=−80 mV. gsyn=0.05 for GABAA and
gsyn=0.1 for glutamate synapses. �O��t� is the fraction of
open channels

d�O��t�
dt

= 
�1 − �O��t���T��t� − ��O��t� , �A29�

and �T��t� is the concentration of transmitter released from
time t to time tmax

�T��t� = A�tmax − t��t� , �A30�

where �x� is the Heaviside function. The synaptic param-
eter values used in the simulation are A=0.5 and tmax
=3 ms for GABAA and 9 ms for AMPA synapses, the rate
constants were chosen as 
=5 ms and �=0.16 ms for
GABAA synapses and 
=0.94 ms and �=0.18 ms for GLU
synapses. The activation scheme of GABAB receptors is more
complex, as it involves the activation of K+ channels by G
proteins �for details see �37��. The model used by Le Masson
et al. �2� is a modified version of the GABAB kinetic model
introduced in �38�

R0 + T � R � D , �A31�

R + G0 � RG → R + G , �A32�

G → G0, �A33�

C1 + 4G � O , �A34�

where the transmitter, T, binds to the receptor, R0, leading to
its activated form, R, and desensitized form, D. The G pro-
tein is transformed from an inactive �GDP bound� form, G0
to an activated form, G, catalyzed by R. Finally, G binds to
open the K+ channel, with four independent binding sites.
With some assumptions �see �3�� the kinetic model for this
system reduces to

IGABAB
= gGABAB

�G�4

�G�4 + Kd
�V�t� − Ek� ,

d�R�
dt

= K1�1 − �R���T� − K2�R� ,

d�G�
dt

= K3�R� − K4�G� , �A35�

where �R� is the fraction of activated receptors and �G� is the
concentration of G proteins. In these equations gGABAB

, K1

=0.52, K2=0.0013, K3, K4=0.033, and Kd=100.
The strengths of the synaptic couplings gGABAA/B

and
gAMPA are varied in different simulations.

APPENDIX B: THE REDUCED MODEL

1. Synaptic currents

The simplest way to model synaptic currents is a two state
scheme of the binding of a neurotransmitter T to postsynaptic
receptors �3�. So the receptor mediated currents are both rep-
resented by a first order kinetic scheme

C + T � O ,

where the transition between closed �C� and open �O� states
depend on the binding of the transmitter �T� with forward
and backward rates 
 and � respectively. As in �39� we only
consider voltage-independent rate constants. With this as-
sumptions we get the following kinetic equation

d�O�
dt

= 
�1 − �O���T� − ��O� = 
 �T� − �O�
 �T� − ��O� .

�B1�

The synaptic current is given by

Isyn = gsyn�O��t��V�t� − Esyn� , �B2�

where gsyn is the maximal conductivity and Esyn is the rever-
sal potential. For glutamate receptors Esyn=0 mV and for
GABAA receptors Esyn=−50 mV. The release and clearance
of transmitter are extremely fast processes compared to the
open/close kinetics, resulting in a very brief presence of
transmitter in the synaptic cleft �40�, which allows us to con-

ROLE OF INHIBITORY FEEDBACK FOR INFORMATION¼ PHYSICAL REVIEW E 73, 031908 �2006�

031908-13



sider O to be constant during the transmitter release. For
simplicity we assume the transmitter release time course to
be a square pulse A�Vpre� which occurs when the presyn-
aptic neuron fires a spike, i.e., when the presynaptic potential
Vpre gets depolarized towards positive potentials. If we as-
sume that initially all synaptic channels are in the closed
state, we get

d�O�
dt

= �
A�Vpre� − ��O� , �B3�

were �=
A. As GABAB synapses contribute less than a tenth
of the total inhibitory synaptic current, they are neglected
here. The rate constants and amplitude were taken from the
biophysical model A3. The constants for the GABA synapse
were modified because of the absence of the GABAB syn-
apse: 
=5 ms−1 and �=0.05 ms−1. For the GLU synapse we
used the same constants as in the biophysical model: 

=0.94 ms−1 and �=0.18 ms−1. We chose A=0.5, and respec-
tively, �=2.5 for GABA synapses and �=0.47 for glutamate
synapses. The synaptic currents are governed by the follow-
ing equations:

IGABA = gGABA�O�GABA�vTC − 2.5� , �B4�

IGLU = gGLU�O�GLUvRE, �B5�

the reversal potential of the GABAA synapse was rescaled by
a factor of 30 to adapt it to the scale of the Hindmarsh-Rose
model.

2. Transformation to a Lienard system

We begin with the autonomous �v ,w� subsystem �6� and
�7�

v̇�t� = w − v3 + 3v2, �B6�

ẇ�t� = 1.8 − 5v2 − w . �B7�

Then v̈= ẇ+ �6v−3v2�v̇, ẇ= v̈− �6v−3v2�v̇, and

w = − v̈ + �6v − 3v2�v̇ + 1.8 − 5v . �B8�

Inserting �B8� in �B6� yields

0 = v̈ + �1.8 − 6v + 3v2�v̇ + �v3 + 2v2 − 1.8� ,

Û0 = v̈ + f�v�v̇ + g�v� . �B9�

�B9�is the so-called Lienard form of Eqs. �B6� and �B7�,
where f�v�=1−6v+3v2 and g�v�=v3+2v2−1.8.

3. Stability of the equilibrium points

The stability of equilibrium points in the fast �v ,w� sub-
system is investigated by a linear approximation to the sys-
tem �6� and �7�. Suppose the equilibrium point has the v
coordinate v0, then the linear approximation is

	ẋ

ẏ

 = A�v0�	x

y

 , �B10�

where �x ,y� are new coordinates whose origin is in the equi-
librium point, and A�v0� is the Jacobian in v0

A�v0� = 	− 3v0
2 + 6v0 1

− 10v0 − 1

 . �B11�

The kind of equilibrium point may be determined by the
signs of the trace Tr�A�v0��=−3v0

2+6v0−1 and determinant
Det�A�v0��=3v0

2+4v0 �12,41�. The eigenvalues �1/2 of the
Jacobian A�v0� are expressed by

�1/2 = 1
2 �Tr�A�v0�� ± ��Tr�A�v0���2 − 4Det�A�v0��� .

�B12�

Table I gives the type of equilibrium point according
to the region v0 belongs to; here Tr−= �3−�6� /3 and Tr+
= �3+�6� /3 are the negative and positive zeroes of
Tr�A�v0��, respectively.

4. Periodic solutions for periodic forcing

The conditions for constants b ,m ,M �0 are
�i� for �v � �b, f�v��m,
�ii� "v�R, f�v��−M,
�iii� for �v � �b, vg�v��0,
�iv� g�v� is monotone increasing in �−� ,−b�,
�v� �g�v� � →� for �v � →�,
�vi� g�v� /G�v�→0 for �v � →�,

where G�v�=�0
vg�u�du.

The proof can be sketched as follows:
�a� The existence of M is easy to establish as f�v�

has a minimum at v=1, further as f�v� is a convex function
this minimum is the global one. If a M � �f�1�=−2� is chosen
�ii� holds.

�b� Set M =m, then b1 may be chosen arbitrarily.
�c� Next vg�v� is a fourth degree polynomial where

the coefficient of the v4 term is positive. So there exists a b2
with vg�v��0 if v�b2�0.

�d� As g�v� is a third degree polynomial, there is a
b3, such that g�v� is monotonously increasing in �−� ,−b3�
and �b3 , � �.
Choose b=max�b1 ,b2 ,b3� then �i�, �iii�, and �iv� hold. Fi-
nally �v� and �vi� are obvious; so the proof is complete.

TABLE I. Equilibrium points depending on v0 �see text�. Only
stable nodes and unstable spirals and saddle nodes occur.

Region Values of v0

Sign of
Tr A�v0�

Sign of
Det A�v0� Type of node

I v0�−4/3 − + stable

II −4/3�v0�Tr− − − saddle

III Tr−�v0�0 + − saddle

IV 0�v0�Tr+ + + unstable spiral

V Tr+�v0 + − saddle
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